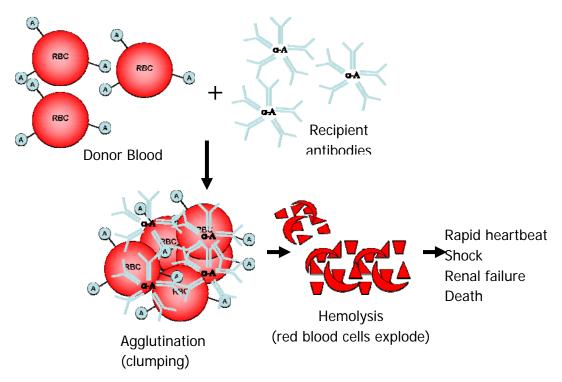
ABO and Rh blood groups

"Why can we donate blood to some people but not to others?"


Model 1: Blood Surface Antigens and Plasma Antibodies

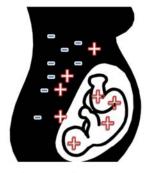
Type A	Type B	Type AB	Type O	
RBC	RBC	A RBC B	RBC	
Surface antigen A	Surface antigen B	Surface antigens A & B	Neither A or B antigens	
→ Ga-B	а-А		a-A a-B	
Anti-B antibodies	Anti-A antibodies	Neither anti-A or anti-B antibodies	Both anti-A and anti-B antibodies	

Critical Thinking Questions

- 1. If Dr. Brown has type A blood, what cell-surface marker proteins or <u>antigens</u> does he have on his red blood cells (RBC)?
- 2. Looking at the bottom half of the model, what antibodies are likely present in Dr. Brown's blood?
- 3. Dr. Mrs. Brown has type O blood, according to the model what surface antigens does she have on her red blood cells?
- 4. What antibodies are likely present in her blood?

Model 2: ABO mis-match reaction

Critical Thinking Questions


- 5. What is the blood type of the donor?
- 6. What is the blood type of the recipient?
- 7. What reaction occurs between the donor's red blood cells and the recipient's opposing antibodies?
 - a. What process follows agglutination?
- 8. Blood mis-matches can result in a condition called **Acute Hemolytic Reaction**. What are the symptoms of this reaction?
- 9. Would agglutination have occurred if the recipient was given type O blood cells?
 - a. Provide a consensus explanation for your answer.

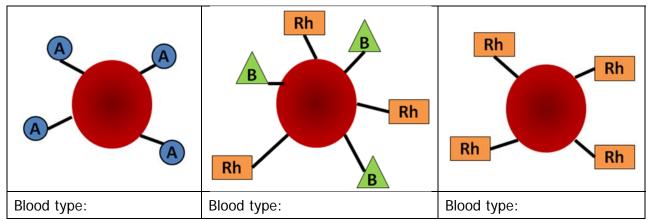
Memorization fact: In addition to ABO, there is another component of blood type – the **Rh factor**. People who posses Rh antigens are referred to as Rh positive (e.g. O+ have nether A or B but they do have Rh), people without Rh antigens are Rh negative (A- would have the A antigen but not B or Rh).

Model 3: Erythroblastosis faetalis (a disease in which a pregnant woman's anti-Rh antobodies destroy fetal red blood cells and typically results in miscarriage).

Woman with RH negative blood type is pregnant with an Rh positive baby

Mother produces no anti-Rh antibodies at the beginning of pregnancy, but she is exposed to fetal Rh antigens

After being exposed to the Rh antigen, mother is now sensitized and produces anti-Rh antibodies


Any subsequent exposure results in the anti-Rh antibodies destroying all Rhpositive cells

Critical Thinking Questions:

- 10. Dr. Brown has the blood type A negative. According to the model and the memorization fact, to what antigen does the word "negative" refer?
- 11. Compare the first pregnancy with the second, does it appear that the first baby was affected by the mother's immune system? What triggers the mother's sensitivity to the Rh antigen?
- 12. Based on the model, if Dr. Brown has never been exposed to the Rh antigen, what do you think will happen if he is transfused with A positive blood?
- 13. What will happen if he is transfused with A+ blood a second time?

Exercises:

1. Using the cartoons below, write out the complete blood type (ABO and Rh) for each picture indicated.

2. Fill in the table for the indicated blood type, use an X to indicate if that particular presence is present in the indicated blood type (see example for type A- blood):

Blood type	A antigens	anti-A antibodies	B antigens	anti-B antibodies	Rh antigens	Can receive a donation from
Α-	Х			Х		A-, O-
A +						
B-						
B+						
AB-						
AB+						
0-						
0+						

- 2. After filling in the table above, which blood type can be considered the universal donor?
- 3. Likewise, which can be considered the universal recipient?