Net Force Particle Model:
 Newton's Second Law Review Problems

1. An 80 kg water skier is being pulled by a boat with a force of 220 N causing the skier to accelerate at $1.8 \mathrm{~m} / \mathrm{s}^{2}$. Find the frictional force on the skier.
2. A 2000 kg car is slowed down uniformly from $20 \mathrm{~m} / \mathrm{s}$ to $5 \mathrm{~m} / \mathrm{s}$ in 4 seconds. Determine the average net force on the car during this time, and how far the car traveled while slowing down.
3. Some baseball pitchers are capable of throwing a fastball at $100 \mathrm{mi} / \mathrm{hr}$. The pitcher achieves this speed by moving his arm through a distance of 1.5 m . Determine the average net force that must be exerted on the 0.15 kg ball during the pitch. $(1$ mile $=1600$ meters $)$
4. The blocks below are moving at a constant velocity of $1 \mathrm{~m} / \mathrm{s}$. If $\mu_{\mathrm{k}}=.3$ between the surface and each block then determine the following:
a. the frictional force on each block
b. the contact forces $\left(F_{B}\right.$ on A, F_{A} on $\left.B\right)$ on each block
c. the applied force, \mathbf{F}.

5. In the diagram below, the cord makes a 25° angle with the horizontal, the mass of the sled and occupants is 100 kg . The tension in the cord is 120 N and the friction force is 15 N . Find the acceleration of the sled.

6. The 60 kg skier shown below is skiing down a 35° incline with a coefficient of friction is 0.08 . Determine the acceleration of the skier.

7. A student, standing on a scale in an elevator at rest, sees that his weight is 900 N . As the elevator rises, his weight increases to 1050 N , then returns to normal. When the elevator slows to a stop his weight drops to 700 N , and then returns to normal. Make the positive direction upward.
A. Describe the motion of the elevator in words.
B. Draw a force diagram for each of the following portions of the trip:
a. At rest
b. Moving from rest to constant speed
c. Slowing from a constant speed to rest
C. Determine the acceleration of the elevator, a) when it is speeding up, b) when it is slowing down.
